История производства стекла

В Египте и Месопотамии стекло умели делать уже 6000 лет назад. Вероятно, его  начали изготавливать позже, чем первые керамические изделия, так как для производства требовались более высокие температуры, чем для обжига глины. Если для простейших керамических изделий было достаточно только глины, то в состав стекла необходимо как минимум три компонента. Изделия из стекла так же, как и из керамики, практически не подвергаются атмосферным воздействиям и хорошо сохраняются даже под слоем земли. Эти изделия оказались документами далекого прошлого, которые донесли до нас информацию об уровне культуры и техники древних народов.

Первый стекольный завод в России был построен в 1636 г. возле г. Воскресенска под Москвой. На нем выдували оконное стекло и стеклянную посуду. Через 30 лет в селе Измайлово, также под Москвой, был построен завод, на котором изготовляли высококачественные стаканы, графины, фляги, рюмки, кувшины и др. Особенно быстро стеклоделие развилось при Петре I. В XVIII в. на территории Московской губернии действовало шесть стекольных заводов.

Промышленная революция привнесла множество новшеств в процесс производства стекла. Так, изобретение насоса высокого давления в 1859 году в Англии сделало необязательным применение мастеров-стеклодувов на этой операции. Усилиями химиков стекло стало более крепким и жаростойким. В 1871 году Вильям Пилкингтон изобрел машину, которая автоматизировала производство плоского стекла путем использования цилиндрического метода. Этот механизированный процесс был улучшен господином Лаббером в 1903 году в Америке.

Несколько позже производители стекла открыли, что плоское стекло может быть закалено путем его повторного разогрева до определенной температуры, с последующим быстрым охлаждением. Такая обработка повысила механические свойства стекла на 400%. Это имело чрезвычайно важное значение для автомобильной промышленности, которая находилась в то время еще в стадии становления.

Технология цилиндрического производства была вскоре полностью вытеснена новым автоматическим процессом, одновременно изобретенным американской компанией Irving Colburn и бельгийской Emile Fourcault. Расплавленное стекло вытягивалось из ванны расплава в виде тонкой ленты, а затем, остывая, прокатывалось между двумя асбестовыми роликами. Несмотря на то, что стекло, изготовленное таким методом, было все еще далеко от совершенства, оно было самым лучшим когда-либо произведенным плоским стеклом.

Расширение применения этой технологии в период с 1920 по 1930 годы привело к 60% снижению цен. На основе этого технологического процесса было освоено изготовление рельефного стекла, что позволило архитекторам расширить применение стекла.

Однако, несмотря на общее улучшение дел в отрасли, камнем преткновения оставалась полировка. Она продолжала быть самостоятельным технологическим процессом, все еще отнимавшим значительное количество времени и сил. 

Производство стекла навсегда изменилось в 1959 году с момента изобретения Аластером Пилкингтоном флоат-процесса, который убрал различие в понятиях плоского и полированного стекла.

Главный потребитель стекла в настоящее время – строительная индустрия. Больше половины всего вырабатываемого стекла приходится на оконное для остекления зданий и транспортных средств: автомашин, железнодорожных вагонов, трамваев, троллейбусов. Кроме того, стекло используют в качестве стенового и отделочного материала в виде пустотелых кирпичей, блоков из пеностекла, а также облицовочных плиток. Примерно треть производимого стекла идет на изготовление сосудов различного типа и назначения. Это прежде всего стеклянная тара – бутылки и банки. В большом количестве стекло расходуется на изготовление столовой посуды. Стекло пока незаменимо для производства химической посуды. В довольно большом количестве из стекла изготавливают вату, волокно и ткани для тепловой и электрической изоляции.

Относительная дешевизна стеклянных строительных материалов обусловливается широким распространением, а, следовательно, доступностью и дешевизной сырья. Расплавленное стекло является удобным материалом для формования в изделия механизированным способом. Стекло хорошо поддается механической обработке. Это также снижает стоимость стеклянных изделий. Стекло пилят так же, как дерево, но для этого в кромку дисковой пилы зачеканивают алмазный или иной твердый порошок. Его можно сверлить обыкновенными стальными сверлами, применяя специальную смачивающую жидкость. Стекло колют на куски при помощи простого инструмента, напоминающего колун для дров, но действующим не ударом, а постепенно нарастающим усилием. Стекло можно обрабатывать на токарном станке резцами из особо твердой стали, вытачивая фигурные колонки так же, как из дерева или металла. Стекло шлифуют и полируют, применяя обычные абразивные порошки, инструменты и методы, давно известные и широко используемые в металлообрабатывающем производстве. Стекло можно сварить из одного кварцевого песка, химическая формула которого SiO2. Однако для этого нужна очень высокая температура (выше 1700 ° C). Получение таких температур в печах промышленного типа связано с большими трудностями. Обычные печи, в которых используются твердое, жидкое или газообразное топливо, для этого не годятся. Для плавления кварцевого песка применяют электрические печи специального устройства или горелки, в которых сжигается водород в токе кислорода. Расплавленный кварцевый песок представляет собой столь густую и вязкую массу, что из нее трудно удалить воздушные пузырьки и придать изделиям нужную форму.

В стекловарении используют только самые чистые разновидности кварцевого песка, в которых общее количество загрязнений не превышает 2...3%. Особенно нежелательно присутствие железа, которое даже в ничтожных количествах (десятые доли%) окрашивает стекло в зеленоватый цвет. Если к песку добавить соду Na2CO3, то удается сварить стекло при более низкой температуре (на 200...300 ° ). Такой расплав будет иметь менее вязкий (пузырьки легче удаляются при варке, а изделия легче формуются). Но такое стекло растворимо в воде, а изделия из него подвергаются разрушению под влиянием атмосферных воздействий. Для придания стеклу нерастворимости в воде в него вводят третий компонент – известь, известняк, мел. Все они характеризуются одной и той же химической формулой – CaCO3.

Стекло, исходными компонентами шихты которого является кварцевый песок, сода и известь, называют натрий-кальциевым. Оно составляет около 90% получаемого в мире стекла. При варке карбонат натрия и карбонат кальция разлагаются в соответствии с уравнениями:

Na2CO3 > Na2O + CO2

CaCO3 > CaО + CO2

В результате в состав стекла входят оксиды SiO2, Na2O и CaО. Они образуют сложные соединения – силикаты, которые являются натриевыми и кальциевыми солями кремниевой кислоты.

В стекло вместо Na2O с успехом можно вводить K2О, а CaО может быть заменен MgO, PbO, ZnO, BaO. Часть кремнезема можно заменить на оксид бора или оксид фосфора (введением соединений борной или фосфорной кислот). В каждом стекле содержится немного глинозема Al2O3, попадающего из стенок стекловаренного сосуда. Иногда его добавляют специально. Каждый из перечисленных оксидов обеспечивает стеклу специфические свойства. Поэтому, варьируя этими оксидами и их количеством, получают стекла с заданными свойствами. Например, оксид борной кислоты B2O3 приводит к понижению коэффициента теплового расширения стекла, а значит, делает его более устойчивым к резким температурным изменениям. Свинец сильно увеличивает показатель преломления стекла. Оксиды щелочных металлов увеличивают растворимость стекла в воде, поэтому для химической посуды используют стекло с малым их содержанием. В табл. 1 приведен состав (в%) некоторых типичных промышленных стекол.

Оконное

72

2

14

9

3

Бутылочное

70

3

17

8

2

Хрустальное

56

11

33

Лабораторное

85

9

2

4

Оптическое

34

13

3

46

4

Сода – сырье относительно дорогое и имеющее огромный спрос со стороны различных отраслей народного хозяйства. Поэтому в качестве источника Na2O при варке стекла используют также природный минерал Na2SO4. В СССР его огромные залежи имеются на месте бывшего залива Кара-Богаз-Гол (рядом с Каспийским морем). Однако в этом случае варка стекла требует более высоких температур. Кроме того, в шихту необходимо вводить уголь для восстановления серы в соответствии с уравнением

2Na2SO4 + С > 2Na2O + 2SO2^ + CO2^

При варке стекла первым плавится оксид щелочного металла, после чего в этом расплаве начинают растворяться зерна кварца и известняка, вступая в химическое взаимодействие. Поэтому чем больше в стекле оксидов щелочных металлов, тем при меньших температурах оно плавится. В Древнем Египте, когда техника получения высоких температур была несовершенна, в стеклоделии преобладали рецепты с повышенным содержанием оксидов щелочных металлов (до 30%) и малым содержанием извести (около 3...5%). В эллинистическую эпоху, с усовершенствованием техники получения высоких температур, содержание оксидов щелочных металлов снижается до 16...17%, а извести повышается до 10%. Естественно, что такие стекла стали более стойкими к воде. В настоящее время варка стекла проводится при температуре 1400...1500 ° C в течение нескольких часов. Процесс варки стеклоделы делят на три стадии: провар шихты, осветление (удаление «мошки» и «свилей»), студка – осторожное охлаждение.

Мошкой стеклоделы называют мелкие пузырьки газа, распределенные по всей массе стекла. Ее удаление из жидкой массы производят «бурлением» при помощи деревянной чурки или обыкновенного сырого картофеля. Помещенные в жидкое стекло, они дают обильное выделение газов, которые и очищают от мошки всю массу. Ее наличие в изделиях считается браком. Мошка особенно недопустима в оптических стеклах.

Стекольным свилем называют нитеобразные потоки, подобные тем, которые можно наблюдать в процессе растворения сахара в воде при медленном перемешивании. Свиль – это видимая граница двух соседних участков стекольной массы. Наличие свилей свидетельствует о плохой перемешанности стекольной массы при варке, т.е. о его низком качестве.

Охлаждение стекла, а точнее изделия из него проводят медленно, чтобы избежать в нем напряжений. При быстром охлаждении стекла поверхностные слои тела затвердевают и могут иметь температуру, близкую к комнатной, а внутренние части, вследствие низкой теплопроводности, могут иметь температуру до 1000 ° C. Поскольку внутренние части при охлаждении сжимаются, а наружные уже не уменьшаются в размере, в них возникают высокие поверхностные сжимающие напряжения. Внутренние слои, наоборот, испытывают высокие растягивающие напряжения. Такое стеклянное тело называют «закаленным». Закаленное стекло обладает высокой механической прочностью. Однако у него есть и недостатки. При нарушении поверхностного слоя (например, нанесение царапины), т.е. при нарушении сжимающих и растягивающих сил, закаленное стекло разлетается вдребезги.

При медленном охлаждении стеклянного тела растягивающие и сжимающие напряжения не возникают. Такое стекло называют «отожженным». Мелкие изделия, например столовая посуда, отжигаются (охлаждаются) в течение нескольких часов. Крупные и прецизионные изделия, например линзы астрономических объективов диаметра 1 м и более, отжигаются в течение нескольких месяцев.

Окраску стекла осуществляют введением в него оксидов некоторых металлов или образованием коллоидных частиц определенных элементов. Так, золото и медь при коллоидном распределении окрашивают стекло в красный цвет. Такие стекла называют золотым и медным рубином соответственно. Серебро в коллоидном состоянии окрашивает стекло в желтый цвет. Хорошим красителем является селен. В коллоидном состоянии он окрашивает стекло в розовый цвет, а в виде соединения CdS·3CdSe – в красный. Такое стекло называют селеновым рубином. При окраске оксидами металлов цвет стекла зависит от его состава и от количества оксида-красителя. Например, оксид кобальта (II) в малых количествах дает голубое стекло, а в больших – фиолетово-синее с красноватым оттенком. Оксид меди (II) в натрий-кальциевом стекле дает голубой цвет, а в калиево-цинковом – зеленый. Оксид марганца (П) в натрий-кальциевом стекле дает красно-фиолетовую окраску, а в калиево-цинковом – сине-фиолетовую. Оксид свинца (II) усиливает цвет стекла и придает цвету яркие оттенки.

Бутылочное стекло низкого сорта, как правило, имеет окраску, которая зависит от присутствия в нем ионов Fe2+и Fe3+. Стекольное сырье трудно очищается от железа и поэтому в дешевых сортах оно всегда присутствует. Ионы Fe2+ хорошо поглощают лучи света с длиной волны примерно 600 ммк (желтые и красные) и, следовательно, окрашивают стекло в дополнительный голубой цвет. Ионы Fe3+ поглощают лучи с длиной волны 500 ммк (синие и фиолетовые), окрашивая стекло в желтоватый цвет. Важно отметить, что ионы Fe2+ в области видимого света имеют удельное поглощение, примерно в 10 раз большее, чем ионы Fe3+. Поскольку в стекле одновременно содержатся как ионы Fe2+, так и ионы Fe3+, они и придают стеклу зеленоватую окраску (бутылочный цвет).

Существуют химические и физические способы обесцвечивания стекла. В химическом способе стремятся все содержащееся железо перевести в Fe3+. Для этого в шихту вводят окислители – нитраты щелочных металлов, диоксид церия СеO2, а также оксид мышьяка (III) As2O3 и оксид сурьмы (III) Sb2O3. Химически обесцвеченное стекло лишь слегка окрашено (за счет ионов Fe3+) в желтовато-зеленоватый цвет, но обладает хорошим светопропусканием. При физическом обесцвечивании в состав стекла вводят «красители», т.е. ионы, которые окрашивают его в дополнительные тона к окраске, создаваемой ионами железа, – это оксиды никеля, кобальта, редкоземельных элементов, а также селен. Диоксид марганца MnO2 обладает свойствами как химического, так и физического обесцвечивания. В результате двойного поглощения света стекло становится бесцветным, но его светопропускание понижается. Таким образом, следует различать светопрозрачные и обесцвеченные стекла, поскольку эти понятия различны.

В большинстве стран имеются свои стандарты на листовое стекло и стеклопакеты. Другие виды строительных стекол выпускаются по стандартам фирм. В настоящее время в отношении строительного стекла и изделий из стекла строительного назначения действуют Межгосударственные стандарты СНГ, государственные стандарты СССР, государственные стандарты стран, и ряд отраслевых и разработанных заводами-изготовителями технических условий. Прежде чем мы ознакомимся с разными марками стекла, заметим, что, несмотря на единую классификацию, введенную еще в СССР, стекло разных Украинских, Белорусских, Российских заводов даже при одинаковой заводской маркировке весьма различно по своим физическим, оптическим свойствам и, в целом, по качеству. Общее правило для марок М1-М6: чем ниже цифра в марке стекла - тем выше его качество, меньше дефектов на единицу поверхности, тем более качественные и ответственные конструкции им можно остеклять, лучше его физические и оптические свойства, меньше отклонений по толщине, разнотолщинности (и оно лучше режется). На листовое стекло марок М1, М2, М3, М4, М5 существует ГОСТ 111-90 (СТ СЭВ 5447-85). Этот стандарт распространяется на листовое стекло, предназначенное для остекления светопрозрачных конструкций, остекления средств транспорта. 

  • М1- применяется для изготовления высококачественных зеркал, ветровых стекол легковых автомобилей применяется так называемое зеркальное улучшенное стекло толщиной 2,0 - 6,0 мм. 
  • М2- Зеркала массового применения, безопасные стекла, в том числе и для средств транспорта производят из зеркального стекла 2,0 - 6,0 мм.
  • М3- Декоративные зеркала, комплектующие для мебели, безопасные стекло и конструкции для транспорта изготавливают из оконного полированного стекла толщиной 2,0 - 6,0 мм. 
  • М4- Высококачественное остекление светопрозрачных конструкций, изготовление изделий для мебели, безопасных стекол для транспортных средств производится, как правило, из оконного полированного стекла 2,0 - 6,0 мм. Часто различие между стеклом марок М3 и М4 весьма условно.
  • М5 - Остекление светопрозрачных конструкций, изготовление изделий для мебели, безопасных стекол для сельскохозяйственных машин и тихоходного транспорта выполняется из оконного неполированного стекла 2,0 - 6,0 мм. 
  • М6 - Остекление светопрозрачных конструкций выполняется также и из оконного неполированного стекла 2,0 - 6,0 мм. Такое стекло называют также "тепличным", так как пригодно для остекления помещений с минимальными требованиями к качеству стекла и широко применяется в остеклении теплиц ввиду низкой стоимости.
  • М7- Из витринного полированного стекла толщиной 6,5 - 12,0 мм производят высококачественное остекление витрин и витражей. 
  • М8- Из витринного неполированного стекла толщиной 6,5 - 12,0 мм производят остекление витрин, витражей, фонарей.
  • ТР (Твердые Размеры)- Стекло изготавливается и поставляется по спецификации потребителя. 
  • СВР (Свободные Размеры)- При отсутствии спецификации потребителя допускается изготовление и поставка стекла в заводском ассортименте размеров.

© 2017 «Гелиос»
Производство листового и тарного стекла
Обратная связь

г. Ставрополь, пр-т Кулакова, 24
Тел./факс: 8(8652) 94-40-92, 94-40-13

Разработка сайта

Яндекс.Метрика